Experimenting the Simulation Strategy of Membrane Computing with Gillespie Algorithm by Using Two Biological Case Studies
نویسندگان
چکیده
Problem statement: The evolution rules of membrane computing have been applied in a nondeterministic and maximally parallel way. In order to capture these characteristics, Gillespie’s algorithm has been used as simulation strategy of membrane computing in simulating biological systems. Approach: This study was carried to discuss the simulation strategy of membrane computing with Gillespie algorithm in comparison to the simulation approach of ordinary differential equation by analyzing two biological case studies: prey-predator population and signal processing in the LigandReceptor Networks of protein TGF-β. Results: Gillespie simulation strategy able to confine the membrane computing formalism that used to represent the dynamics of prey-predator population by taking into consideration the discrete character of the quantity of species in the system. With Gillespie simulation of membrane computing model of TGF-β, the movement of objects from one compartment to another and the changes of concentration of objects in the specific compartments at each time step can be measured. Conclusion: The simulation strategy of membrane computing with Gillespie algorithm able to preserve the stochastic behavior of biological systems that absent in the deterministic approach of ordinary differential equation. However the performance of the Gillespie simulator should be improved to capture complex biological characteristics as well as to enhance the simulation processes represented by membrane computing model.
منابع مشابه
Modeling A Multi-Compartments Biological System with Membrane Computing
Problem statement: Most of the biological systems have been hierarchical in structure with processes interacting between different compartments. Membrane computing formalism has provided modeling capabilities in representing the structure of biological systems. Approach: This study was carried to investigate the modeling of a multi-compartment biological system by using membrane computing forma...
متن کاملA simulation study of calcium release channel
The IP3R calcium release channel has been simulated using a stochastic simulation algorithm (SSA;Gillespie algorithm) and De young-Keiser model. A set of different concentration for Cat' and IP3 havebeen used. Considering the Number of molecules in each state, a non linear behavior of the system can beseen clearly. The inhibiting role of the Ca+2 on the open state (X110) has been studied. The d...
متن کاملModeling Hormone-induced Calcium Oscillations in Liver Cell with Membrane Computing
The capability of membrane computing to deal with distributed and parallel computing models, allows it to characterize the structure and processes of biological systems. With this advantage, membrane computing provides an alternative modelling approach to conventional methods such as ordinary differential equations, primarily in preserving the discrete and nondeterministic behavior of biologica...
متن کاملTask Scheduling Algorithm Using Covariance Matrix Adaptation Evolution Strategy (CMA-ES) in Cloud Computing
The cloud computing is considered as a computational model which provides the uses requests with resources upon any demand and needs.The need for planning the scheduling of the user's jobs has emerged as an important challenge in the field of cloud computing. It is mainly due to several reasons, including ever-increasing advancements of information technology and an increase of applications and...
متن کاملReliability assessment of power distribution systems using disjoint path-set algorithm
Finding the reliability expression of different substation configurations can help design a distribution system with the best overall reliability. This paper presents a computerized a nd implemented algorithm, based on Disjoint Sum of Product (DSOP) algorithm. The algorithm was synthesized and applied for the first time to the determination of reliability expression of a substation to determine...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010